Prepare for the New York Law Exam with interactive study tools and comprehensive multiple-choice quizzes. Enhance your understanding with detailed explanations and tips to excel in your NYLE. Get ready to ace your exam!

Each practice test/flash card set has 50 randomly selected questions from a bank of over 500. You'll get a new set of questions each time!

Practice this question and more.


Which statement is false regarding the rules of evidence?

  1. Evidence that is prejudicial can still be admitted if relevant

  2. Evidence is relevant if it disqualifies a material fact

  3. A judge must exclude prejudicial evidence regardless of probative value

  4. The objective of evidence rules is to present reliable facts to the jury

The correct answer is: A judge must exclude prejudicial evidence regardless of probative value

The statement that a judge must exclude prejudicial evidence regardless of probative value is false. In the context of rules of evidence, it is understood that evidence can indeed be prejudicial; however, it can still be admissible if its probative value—the ability to prove something relevant to the case—outweighs its prejudicial effects. The balancing test applied by judges allows for the admission of evidence that might be damaging as long as it is deemed to provide significant insights into the issues at trial. The other statements hold true in the context of evidence rules. Evidence being prejudicial yet relevant indicates that even if it might injure one party's case, it can still be permissible if it serves to illuminate relevant matters in dispute. The definition of relevant evidence generally includes anything that makes a fact more or less probable, which can include evidence that disqualifies or supports material facts in the case. Finally, the ultimate goal of rules of evidence indeed focuses on presenting reliable and accurate facts to assist the jury in reaching a fair verdict. Thus, the assertion in the chosen answer properly highlights a fundamental principle within the evidentiary framework.